

Onboard Autonomy on the Three Corner Sat Mission

S. Chien, B. Engelhardt, R. Knight, G. Rabideau, R. Sherwood

 Jet Propulsion Laboratory
California Institute of Technology

E. Hansen, A. Ortiviz, C. Wilklow, S. Wichman

University of Colorado, Space Grant College

Keywords: planning, autonomy, scheduling, robust
execution, constellation, teamwork, coordination

Abstract

Three Corner Sat (3CS) is a mission of 3 university
nanosatellites scheduled for launch in late 2002. The
3CS mission will utilize significant autonomy to
perform onboard science data validation and
replanning. The 3CS mission will use onboard science
data validation, responsive replanning, robust
execution, and anomaly detection based on multiple
models. Demonstration of these capabilities in a flight
environment will open up tremendous new
opportunities in space-borne science and space
exploration that would be unreachable without this
technology.

1 Introduction

The Three Corner Sat (3CS) mission is a University
nanosat mission consisting of three coordinated
satellites. 3CS will be launched from the Space Shuttle
cargo bay via the Air Force Research Laboratory’s
Multi-Satellite Deployment System (MSDS) in late
2002, and will use extensive autonomous flight
software. This software will enable significantly
increased science, relating to the 3CS science goals of
imaging earthborne clouds from low earth orbit. The
3CS mission also represents significant outreach, as
the mission and spacecraft are designed, built and
operated almost entirely by students at the University
of Colorado, Arizona State University, and New
Mexico State University.

This paper focuses on the onboard autonomy
capability that will be used for the 3CS mission. The
3CS autonomy capability (threecornersat.jpl.nasa.gov)
includes: the SCL robust execution system, the
CASPER continuous planning system, an onboard
science data validation module, the SELMON

anomaly detection and isolation system, and a basic
spacecraft coordination package.

The first element of 3CS autonomy is the
Spacecraft Command Language (SCL) used for robust
execution. In 1997, SCL was flown by CSGC on the
DATA-CHASER shuttle payload [Chien et al. 1999].
SCL has also flown onboard several missions
including Clementine and FUSE (see
www.sclrules.com). SCL provides a rule and script-
based procedural language for encoding robust
execution procedures as well as basic coordination
constructs such as locking, blocking, and run-time
resource management. SCL will be used to
demonstrate low-level autonomy including: event-
driven execution, local retries, low-level fault
responses, and command validation.

The second element of 3CS autonomy is the
Continuous Activity Scheduling Planning Execution
and Replanning (CASPER) [Chien et al. 2000]
(casper.jpl.nasa.gov) onboard planning software.
CASPER will demonstrate onboard continuous
planning to enable the 3CS constellation to respond to
mission anomalies, mission opportunities, as well as
onboard evaluation of science data. Onboard planning
enables integration of the planning process with
execution to provide feedback.

The third element of autonomy onboard 3CS is
science data validation. Because the 3CS spacecraft
will be tumbling, many science images may be of
outer space, the Sun, or with the Earth in only a small
portion of the image. Onboard data validation will use
heuristic methods to estimate the utility of science
images. The CASPER onboard planner will then use
these utility scores in developing future operations
plans. This science information will be used to discard
images of lowest utility, prioritizing downlink to send
the best images first, and making plans to acquire
more science images if storage and other operations
constraints allow.

The fourth element of 3CS autonomy is the
SELMON monitoring system. SELMON uses
empirically derived error bounds to enable context-

sensitive anomaly detection. SELMON will be used to
derive error limits and anomaly detection to assist in
monitoring the performance of the 3CS constellation.

Finally, 3CS will be flying basic spacecraft
coordination software. This software will resolve the
leadership election problem, in which reliably one
spacecraft is selected as the lead spacecraft that will
perform centralized control of the three spacecraft
constellation.

The remainder of this paper is organized as
follows. First we describe the basic elements of the
Three Corner Sat Mission. Next we describe the
onboard science data validation algorithms. We then
describe the robust execution (SCL) and onboard
replanning (CASPER) capabilities. Next the
SELMON onboard monitoring and teamwork
capabilities are described. Finally, we describe
mission status, related work, and future work.

2 The Three Corner Sat
Constellation Mission

The Three Corner Sat constellation will consist of
three satellites flying in a formation that degrades as
the mission continues. The spacecraft will be deployed
from the Space Shuttle in September 2002. The
mission length is expected to be approximately three
months, dependent on atmospheric drag that will
eventually cause the satellites to de-orbit.

Each of the three spacecraft has as its primary
science instrument two fixed cameras. These cameras
will be used to take images of the earth with the
intention of capturing images of clouds. In order to
simplify the mission and costs, the spacecraft will be
tumbling (e.g., not attitude stabilized or controlled).

The 3CS spacecraft are lightweight nanosatellites
each weighing approximately 15 kg. The exterior
envelope of the structure is a six-sided disk structure
consisting of tubular supports and machined end caps
to hold the bulk of the loading. Figure 1 shows the 3
spacecraft stack before deployment and Figure 2
shows a single spacecraft in the deployed state.

Figure 1: 3-Spacecraft Stack Prior to Deployment

Figure 2: Single Spacecraft after Deployment

The exterior of the spacecraft is hexagonal with solar
panels completely covering all sides except the top
and bottom. The solar array panels are mounted on
thin aluminum sheets that are attached to the exterior
of the frame. All components are attached to
aluminum honeycomb plates, which fasten to the main
frame via slide-in interface brackets, and/or standard
socket head cap screws. The batteries are stored in the
middle of the structure to avoid an unbalanced inertial
configuration. The batteries cells are housed in an
eccofoam and aluminum structure attached in a
manner to stiffen the component panels from harsh
vibration environments.

The onboard flight processor is a 40 MHz
PowerPC 825 that is not radiation hardened. The flight
processor will be running the VxWorks real-time
operating system with 16 MB of non-volatile RAM
and 16 MB of dynamic RAM. This available memory
must hold the operating system kernel, all of the
traditional flight software (to manage the power,
camera, and communication subsystems), the
autonomy flight software, and all science data (camera
images).

3 Onboard Science Data
Validation Algorithms

The first element of onboard decision-making is
onboard science data validation. Because the 3CS
spacecraft are not attitude controlled (e.g.tumbling),
their rotation will be characterized and modeled using
information derived from the solar panel power
generation. However, because of the difficulty of
accurately modeling this motion, it is expected that
many science images will contain little or no portions
of the Earth. In order to detect these situations, 3CS
will fly software to evaluate science images. The
simplest way to detect these cases is to compress the
images. Images of constant dynamic range (e.g. almost

all zeros caused by missing the Earth entirely) will
compress almost completely (e.g. to very small size).
Computing an average will distinguish all zeros from
all maximum values. Alternatively more complex
algorithms to find the limb of earth (the extremely
bright crescent of the edge of the Earth facing the Sun)
could be used. A range of these algorithms is currently
being considered and tested on existing images
deemed to be similar to 3CS mission data.

4 Robust Execution Software

SCL [SCL, 2001] is a Commercial off the shelf
(COTS) software package whose core is a powerful
scripting language. It enables a control system to
process data input from multiple sources representing
the state of the system and to take action based on
either directed or detected system state.

SCL technology has been in development since
1988. SCL was proven in its successful flight on board
Clementine-1 and ROMPS in 1994. Because it was
first developed for an embedded flight environment,
SCL has a small memory footprint and low
computational demands.

The SCL language combines the features of a
traditional scripting language, such as systems test and
operations language (STOL), with the logic capture
capability of a rule-based expert system and the
functionality of a database definition language.

Using the SCL language—including scripts, rules
and constraints, data formats, templates and
definitions—a system designer can fully define all
data and processes used by the control system. The
system can take action based on time, operator
directive, detected system state, or any combination of
these. In addition, a user can dynamically reconfigure
the system by modifying, in real-time, the SCL
language constructs that specify what actions should
take place under what circumstances.

SCL scripts, rules, and databases are reusable
across a family of control systems. For example, for
the Far Ultraviolet Spectroscopic Explorer (FUSE)
mission, SCL models were reused: on the payload
flight processor, in the payload integration and test
system, and at the satellite control center. On 3CS, the
same core set of rules and scripts is used for
prototyping, testing, as well as in the ground software
and flight software.

The SCL database contains records defining all
data items that characterize a given system. Some
examples include sensor measurements, actuator
states, and derived data. Each record includes the
current value of the data item and various attributes
that are accessible by other SCL modules, scripts, and
rules. Certain attributes can be “set” to cause a rule to

trigger or to control actuators. Special record types
specify how a data item is to be extracted from an
input data stream, such as for telemetry processing.

The SCL DataIO module acquires data in real-time
from external sources, updates the database, converts
the data to engineering units, and filters, smoothes and
archives the data if desired. DataIO also performs
limit checking, and notifies the Real Time Engine
(RTE) if any data value change exceeds a user-defined
threshold. The SCL RTE is the inference engine for
the underlying expert system, the command
interpreter, and the script scheduler and execution
manager. SCL scripts and rules are compiled by the
SCL compiler and loaded to the RTE in the form of an
SCL project. This project provides the RTE with the
procedural, scheduling, and event-capturing elements
of the system. The RTE captures all SCL database
updates and processes the corresponding rules
associated with a particular database item. The SCL
compiler also supports real-time communication
between an external operator and the RTE and SCL
database via a “command line” interface.

 SCL is used as the “glue” for the 3CS flight
software, and integrates the autonomy software with
the communications, power, and science payload
software. Software components (external to SCL)
communicate with the SCL RTE using a Message
Software Bus. SCL can send a “notify“ message to an
external “listen” application when an SCL script or
rule changes the state of an actuator. SCL also
provides a constraint checking capability that allows
the RTE to impose pre-conditions on command
execution. This enables SCL to avoid potential failure
scenarios, or to automatically execute pre-command
configuration scripts.

SCL’s mixture of procedural, time-based, and
event-based programming using scripts and rules
provides a rich environment for the design of
autonomous applications. SCL scripting automates
routine tasks and ensures consistently correct
command sequences. Using rules that monitor and
reason based on system state information, SCL can
detect and react to events, such as anomalies, faster
than human operators. SCL executes both time-based
and event-based operations simultaneously in real-
time.

For the 3CS mission, SCL is used to integrate the
flight software components. SCL scripts will be used
onboard to perform activities such as imaging,
managing the inter-satellite communications link,
coordinating ground/spacecraft communications
opportunities, managing the power subsystem, and
performing onboard housekeeping (such as data and
event logging).

SCL rules and constraints encode the
interdependencies between various activities being

performed onboard each of the 3CS spacecraft. For
example, if onboard sensors indicate that a spacecraft
is low on power, onboard planning and execution will
be used to reduce the use of the power-intensive
transceivers. Additionally, power availability will be
monitored to appropriately postpone imaging
opportunities until the spacecraft has reached a
nominal power state. SCL scripts have the capability
to check state and resource availability so as to only
execute if they do not endanger the spacecraft. SCL
will also be used to monitor and log spacecraft
telemetry points as well as to execute the actual data
dumps for downlinks during communications
opportunities.

5 CASPER Planning Software

3CS will use onboard continuous planning software.
This software will be used to generate mission plans to
manage the science and engineering activities of the
spacecraft. Specifically, 3CS will be flying the
Continuous Activity Scheduling Planning Execution
and Replanning (CASPER) continuous planning
system.

Traditionally, the majority of planning and
scheduling research has focused on a batch
formulation of the problem. In this approach, when
addressing an ongoing planning problem, time is
divided up into a number of planning horizons, each of
which lasts for a significant period of time. When one
nears the end of the current horizon, one projects what
the state will be at the end of the execution of the
current plan (see Figure 3). The planner will then
generate a plan for the new horizon using a user-
defined set of goals and the expected initial state. As
an example of this approach, the Remote Agent
Experiment operated in this fashion (Jonsson et al.
2000).

Plan for
next horizon

Plan for
nex t horizon

Figure 3: Traditional Batch Plan
then Execute Cycle

This approach has a number of drawbacks. In this

batch oriented mode, typically planning is considered
an off-line process, which requires considerable
computational effort, and there is a significant delay
from the time the planner is invoked to the time that

the planner produces a new plan.1 If a negative event
occurs (e.g., a plan failure), the response time until a
new plan is generated may be significant. During this
period the system being controlled must be operated
appropriately without planner guidance. If a positive
event occurs (e.g., a fortuitous opportunity, such as
activities finishing early), again the response time may
be significant. If the opportunity is short lived, the
system must be able to take advantage of such
opportunities without a new plan (because of the delay
in generating a new plan). Finally, because the
planning process may need to be initiated significantly
before the end of the current planning horizon, it may
be difficult to project what the state will be when the
current plan execution is complete. If the projection is
wrong the plan may have difficulty.

However, in an onboard planning context, the
planner is an embedded entity that makes the batch-
oriented model of planning inappropriate. Specifically,
such an embedded planner must be anytime and
responsive. It must be anytime in that at any point in
time there must be an executable plan. This means that
generative planning techniques are less suitable
because they do not have the “anytime” property.

To achieve a higher level of responsiveness in a
dynamic planning situation, we utilize a continuous
planning approach and have implemented the
CASPER continuous planning system (Chien et al.,
2000). Rather than considering planning a batch
process in which a planner is presented with goals and
an initial state, the planner has a current goal set, a
plan, a current state, and a model of the expected
future state. At any time an incremental update to the
goals, current state, or planning horizon (at much
smaller time increments than batch planning)2 may
update the current state of the plan and thereby invoke
the planner process. This update may be an

1 As a data point, the planner for the Remote Agent
Experiment (RAX) flying on-board the New
Millennium Deep Space One mission (Jonsson et al
2000) takes approximately 4 hours to produce a 3 day
operations plan. RAX is running on a 25 MHz RAD
6000 flight processor and uses roughly 25% of the
CPU processing power. While this is a significant
improvement over waiting for ground intervention,
making the planning process even more responsive
(e.g., on a time scale of seconds or tens of seconds) to
changes in the operations context, would increase the
overall time for which the spacecraft has a consistent
plan. As long as a consistent plan exists, the spacecraft
can keep busy working on the requested goals and
hence may be able to achieve more science goals.
2 For the spacecraft control domain we are envisioning
an update rate on the order of tens of seconds real
time.

Current Plan

New Plan

∆ State ∆ Goals

∆ Goal

∆ Goals

New Plan

New Plan

∆ State

∆ State

Figure 4: Continuous Planning
Incremental Plan Extension

unexpected event or simply time progressing forward.
The planner is then responsible for maintaining a
consistent, satisficing plan with the most current
information. This current plan and projection is the
planner’s estimation as to what it expects to happen in
the world if things go as expected. However, since
things rarely go exactly as expected, the planner
stands ready to continually modify the plan. From the
point of view of the planner, in each cycle the
following occurs:

• Changes to the goals and the initial state first
posted to the plan,

• Effects of these changes are propagated through
the current plan projections (including conflict
identification)

• Plan repair algorithms3 are invoked to remove
conflicts and make the plan appropriate for the
current state and goals

This approach is shown in below in Figure 4. At

each step, the plan is created by using incremental
replanning from:

• The portion of the old plan for the current
planning horizon;

• The change (∆) in the goals relevant for the
new planning horizon;

• The change (∆) in the state; and
• The new (extended) planning horizon

For the 3CS mission, CASPER will manage the

near-term mission plan in between daily uplink and
downlink passes. This involves tracking the
engineering, communications, and science activities
and modifying them in response to execution
feedback. The most significant of these will be
replanning of science observations based on onboard
data assessment. Using a science score computed for
each image onboard, CASPER will prioritize images.

3 For details on the state/resource representation or the
repair methods see (Rabideau et al. 1999).

CASPER will then decide whether or not to discard
images with little or no Earth in the frame, and plan
for new images in an attempt to maximize the science
return. While replanning, CASPER will need to
account for available system resources: imaging
opportunities, available power and energy, and
available memory. CASPER will also need to manage
setup procedures for downlink, uplink, command load,
and imaging activities.

Within the available flight processor resources,
CASPER is expected to be able to respond to activity
and state updates on the 10 to 60 second timescale.
This will enable more recent information regarding the
execution status of activities as well as monitored state
and resource values to influence planning.

CASPER will be integrated with the SCL
execution system allowing for tight feedback from
SCL rules and scripts to be reflected and acted upon
within the CASPER plans.

The CASPER system is currently being deployed
in a suite of applications including spacecraft control,
autonomous ground communications stations,
uninhabited aerial vehicles, and industrial control.

There is significant interest in using CASPER to
provide onboard planning for single rover and multi-
rover formations. In collaboration with the Long
Range Science Rover effort, CASPER is being
integrated with onboard control software for the
Rocky 7 and Rocky 8 prototype planetary rovers
[Volpe et al. 2000]. In this application, CASPER
generates validated rover-command sequences for
Rocky 7 based on high-level science and engineering
activities. Once a plan has been generated it is
continuously updated during plan execution to
correlate with sensor and other feedback from the
environment so that the planner may be responsive to
unexpected changes.

CASPER has also been used in research
demonstrations of spacecraft constellation autonomy
(Barrett 1999, Barrett 2000) and rover swarms (Chien
et al. 2000). In these efforts, CASPER is used in a
distributed fashion to coordinate a team of rovers or
spacecraft in achieving planetary science goals (for the
remainder of this discussion we presume a distributed
rover model but analogous efforts are underway
involving distributed spacecraft). For this application,
a distributed version of CASPER was developed
where it is assumed each rover has an onboard
planner, which allows rovers to plan for themselves
and/or for other rovers. Each onboard planner
generates a rover command sequence for achieving
science goals and also performs execution monitoring
and dynamic re-planning when necessary. This
distributed planning environment is part of a multi-
rover execution architecture being developed at JPL
that integrates a number of systems including the

ASPEN planning and scheduling system, a machine-
learning data analysis system, Rocky 7 rover-control
software, and a multi-rover simulation environment
(Estlin et al. 1999).

CASPER is also being deployed to automate
ground communications stations (Fisher et al. 2001)
and uninhabited aerial vehicles (Colgren et al. 2000).

6 SELMON Monitoring Software

The SELective MONitoring system (SELMON)
(Doyle et al. 1993, Doyle 1995) is a generalized
software-based monitoring system that uses multiple
anomaly models to identify and isolate phenomena.
SELMON improves upon existing monitoring
methods in two areas:

Anomaly Detection- SELMON employs several
techniques for recognizing abnormal behavior, going
beyond the traditional methods of limit sensing
(comparing sensor values to predefined alarm
thresholds) and discrepancy detection (compares
sensor values to predictions from a simulation).
SELMON detects anomalies that traditional software-
based methods fail to detect, making the anomaly
detection process more complete and removing this
burden from the operators.

Attention Focusing- Once an anomaly has been
detected, SELMON determines how much of the
system being monitored has been affected. This kind
of information can be critical in the first few moments
of an emergency, when several sensors reporting the
same anomaly may lead to operator confusion and
delayed response.

For the 3CS mission, current plans are to fly
several anomaly detection methods onboard the
spacecraft with more analysis to take place on the
ground (where more memory and computational
power are available). Based on availability of
resources, this decision will be evaluated closer to
launch.

Using SCL in conjunction with SELMON will
enable further insight into system performance by
evaluating summary data produced through the use of
these tools. SELMON profiling will be used to
monitor several aspects of system performance
including: communication system performance, power
system performance, as well as thermal characteristics
of the spacecraft. SELMON will also be applied to
tracking data (derived externally) and used to analyze
the trajectory and orbit decay to assist in projecting
mission lifetime, thermal, and communications
characteristics.

The pairing of SCL and SELMON allows for a
system that can be incrementally automated based on
actual mission performance, experience gained during

the mission and increased confidence in the
automation of a given function rather than automating
functions prior to launch based on predicted behavior.

7 Teamwork and Coordination

While the 3CS mission utilizes three spacecraft, in
order to simplify the mission as much as possible, 3CS
uses a simple coordination scheme based on
centralized control. One spacecraft is designated the
master spacecraft that will maintain the operations
plan for all three spacecraft.

However, there still remains the problem of
reliably electing a leader. Using a single static leader
(e.g. designated prior to launch) is undesirable because
if that spacecraft loses some key functionality it would
mean the end of the mission. This general leadership
election problem has been analyzed in depth (Tushar
et al, 1996a, 1996b). Current plans are to implement a
basic hard-coded solution to the three spacecraft
problem in the onboard flight software.

8 Mission Status and Schedule

The 3CS mission is scheduled for launch in late 2002,
with the software design, development, and integration
already underway. The development schedule includes
integration milestones continuously throughout the
spring and summer of 2001. As part of this effort, the
CASPER software is already being integrated with the
SCL execution system. Additionally a 3CS testbed has
been developed at the University of Colorado, where
the individual pieces of the autonomy software are in
the process of being integrated.

9 Related Work and Future Work

One related autonomy flight was the Remote Agent
Experiment (RAX) [RAX, 1999]. The 3CS
autonomous spacecraft mission differs from RAX in
several ways. First, 3CS will be flying autonomy
software for the entire mission duration (expected to
be approximately 3 months), whereas RAX controlled
the Deep Space One Spacecraft twice for
approximately two days each. Second, 3CS will
demonstrate closing the loop with an onboard science
element as well as demonstrating onboard automation
of engineering functions, whereas RAX did not
involve science components. However, the Deep
Space One Spacecraft was considerably more complex
than the 3CS spacecraft. Finally, the constituent
autonomy software modules used by each mission are
different. RAX demonstrated Mode Identification and
Reconfiguration using Livingstone and Burton, robust

execution using the Execution Support Language
(ESL), and onboard planning using the Remote Agent
Planner and Scheduler.

PROBA[PROBA] is a European Space Agency
mission that will demonstrate onboard autonomy.
PROBA will be launching in 2001.

Techsat-21 is a United States Air Force Mission
launching in 2004. This mission will demonstrate the
Autonomous Sciencecraft Constellation concept
[Chien et al 2001, ASC 2001], using the CASPER
planning software and SCL robust execution software.
ASC will demonstrate the onboard science concept
using a much more capable three spacecraft
constellation. In addition to CASPER and SCL, ASC
will use the Object Agent software to perform
autonomous formation flying and maneuvering. In
addition, ASC will use the Livingstone 2 and Burton
software for model-based mode identification and
reconfiguration.

10 Conclusions

The 3CS mission will use significant onboard
autonomy including: robust execution using SCL,
onboard planning using CASPER, onboard data
validation, and onboard anomaly detection using
SELMON. This exciting new mission will validate
key autonomous systems technologies for future
missions furthering the long-term quest for more
capable, autonomous space systems for the 21st
century.

11 Acknowledgements

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

12 References

Autonomous Sciencecraft Constellation,
http://asc.jpl.nasa.gov

S. Chien, G. Rabideau, R. Knight, R. Sherwood,
B. Engelhardt, D. Mutz, T. Estlin, B. Smith, F. Fisher,
T. Barrett, G. Stebbins, D. Tran, "ASPEN -
Automating Space Mission Operations using
Automated Planning and Scheduling," SpaceOps,
Toulouse, France, June 2000.

“R. Colgren, P. Schaefer, R. Abbott, H. Park, A.
Fijany, F. Fisher, M. James, S. Chien, R. Mackey, M.
Zak, T. Johnson, and S. Bush, Technologies for
Reliable Autonomous Control (TRAC) of UAVs,”
Proceedings of the 19th Digital Avionics Systems
Conference (DASC), Philadelphia, PA, 7-13 October
2000.

The PROBA Onboard Autonomy Platform,
http://www.estec.esa.nl/proba/

R. Doyle et al., “Focused Real-time Systems
Monitoring based on Multiple Anomaly Models,”
Working Notes of the 7th International Workshop on
Qualitative Reasoning about Physical Systems,
Eastsound, WA, May 1993.

R. Doyle, “Determining the Loci of Anomalies
Using Minimal Causal Models,” Proceedings of the
Fourteenth International Joint Conference on
Artificial Intelligence, Montreal, Canada, pp. 1821-
1827, August 1995.

F. Fisher, B. Engelhardt, R. Knight, C. Wilklow,
S. Chien, T. Estlin, "CLEaR : Closed Loop Execution
and Recovery," Proceedings of the IEEE Aerospace
Conference (IAC), Big Sky, MT, March 2001.

Interface & Control Systems, Spacecraft
Command Language, http://www.sclrules.com.

A. Jonsson, P. Morris, N. Muscettola, K.
Rajan, and B. Smith, "Planning in Interplanetary
Space: Theory and Practice," Proceedings of the Fifth
International Conference on Artificial Intelligence
Planning Systems, Breckenridge, CO, April 2000.

G. Rabideau, R. Knight, S. Chien, A.
Fukunaga, A. Govindjee, "Iterative Repair Planning
for Spacecraft Operations in the ASPEN System,"
International Symposium on Artificial Intelligence
Robotics and Automation in Space, Noordwijk, The
Netherlands, June 1999.

The Remote Agent Experiment,
http://rax.arc.nasa.gov.

D.C. Tushar, S. Toueg, “Unreliable Failure
Detectors for Reliable Distributed Systems,” Journal
of the ACM, 43:2, March 1996, 225-267.

D.C. Tushar, V. Hadzilacos, and S. Toueg,
“The Weakest Failure Detector for Solving
Consensus,” Journal of the ACM, 43:4, July 1996,
685-722.

R. Volpe, T. Estlin, S. Laubach, C. Olson, B.
Balaram, "Enhanced Mars Rover Navigation
Techniques," IEEE International Conference on
Robotics and Automation (ICRA 2000), San
Francisco, CA, April 24-28, 2000.

